
J. Fluid Mech. (2002), vol. 451, pp. 295–317. c© 2002 Cambridge University Press

DOI: 10.1017/S002211200100653X Printed in the United Kingdom

295

Transient motion of a confined stratified fluid
induced simultaneously by sidewall thermal

loading and vertical throughflow

By J U N S A N G P A R K1 AND J A E M I N H Y U N2†
1Department of Mechanical Engineering, Halla Institute of Technology, San 66, HeungUp, Wonju,

Kangwondo 220-712, South Korea
2Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology,

373-1 Kusong-Dong, Yusung-gu, Taejon 305-701, South Korea

(Received 6 August 2000 and in revised form 20 July 2001)

An analytical study is made of the transient adjustment process of an initially
stationary, stably stratified fluid in a square container. The boundary walls are
highly conducting. The overall Rayleigh number Ra is large. Flow is initiated by the
simultaneous switch-on of a temperature increase (δT ) at the vertical wall and a forced
vertical throughflow (Ra−1/4δw) at the horizontal walls. The principal characteristics
are found by employing the matched asymptotic expansion method. The flow field is
divided into the inviscid interior, vertical boundary layers and horizontal boundary
layers and analyses are conducted for each region. The horizontal boundary layers
are shown to be of double-layered structure, and explicit solutions are secured for
these layers. Evolutionary patterns of velocity and temperature in the whole flow
domain are illustrated. Both opposing (δw/δT > 0) and cooperating (δw/δT < 0)
configurations are considered. The flow character in the opposing configuration
can be classified into (a) a forced-convection dominant mode (δw/δT > 1/

√
2),

(b) a buoyancy-convection-dominant mode (0 < δw/δT < 1/
√

2), and (c) a static

mode (δw/δT ≈ 1/
√

2). Global evolutionary processes are depicted, and physical
rationalizations are provided.

1. Introduction
The stratification process of a fluid in an enclosed container is a long-standing

classical problem (e.g. Elder 1965; Gill 1966; Batchelor 1954; Bergholz 1978; Patter-
son & Imberger 1980). A rudimentary experimental method is to place an initially
homogeneous fluid in a rectangular cavity. If the top (bottom) horizontal wall is hot
(cold), a stably stratified, vertically linear, temperature profile is established, by way
of conduction, in the stagnant fluid. It is important in this situation that the vertical
sidewalls are thermally insulated. The time needed for stratification is given by the
diffusion timescale O(H2/κ). where H is the height of the cavity and κ the thermal
diffusivity of fluid.

The classical work by Gill (1966) delineated the heat transfer characteristics in
a vertical slot with different temperatures at the walls. Walin (1971), by dropping
the assumption of perfectly conducting walls, derived a simplified equation for the
density field in the interior. Expanding the approach of Walin (1971), a practically
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useful model of the stratification process was proposed by Rahm & Walin (1979a)
and Rahm (1986). They allowed a small vertically upward mass flux, passing through
the horizontal walls, as a means to facilitate stratification from an initially isothermal
state. To better represent reality, the perfectly insulating condition at the vertical walls
was also relaxed. Approximate equations which govern the transient stratifying process
were suggested by Rahm (1986), and numerical solutions and physical implications
were discussed by Hyun & Hyun (1986).

Another much-studied topic is heat-up, i.e. the transient adjustment process in
response to temperature changes imposed at the vertical sidewall. The original model
developers took note of the analogy between stratified and rotating fluids (e.g. Vernois
1970; Sakurai & Matsuda 1972; Jischke & Doty 1975; Hyun 1984, 1985, 1987). It was
asserted that the overall stratifying process in the interior is controlled by convection
and, therefore, is substantially accomplished over the heat-up timescale, which is an
order-of-magnitude smaller than the diffusion timescale.

In the above two methodologies, the common theme is the initiation of convection,
i.e. the bulk fluid motions, to expedite the stratifying process. In the former, the effect
of forced convection by using a throughflow is the dominant factor. In the latter,
buoyancy-driven convection, caused by the alteration in boundary-wall temperature,
is the main ingredient. In the present account, the process of fluid stratification
when the above two effects are comparable and simultaneously present is studied
analytically.

In the present paper, a theoretical analysis is made of the behaviour of an initially
stationary, stably stratified fluid in a square cavity. Fluid motion is initiated by
introducing a vertical mass flux through the horizontal walls as well as a change
in temperature at the vertical walls. The objective is to describe the flow details
which are caused by the forced convection of the throughflow and by the buoyancy
effect at the vertical walls. The analysis tackles the situation of practical interest
in which the forced throughflow is comparable to the vertical flow induced in the
buoyancy layer. Also, the vertical walls of the container are taken to be highly
conducting. The problem posed is analogous to rotating flow, where the equivalent
of the mass flux through the horizontal walls is a small difference in angular velocity
of the container walls. The practical implications of the analogous rotating flow
in geophysical fluid systems are obvious. The relevance of the flow studied here
is in technological applications (see Gill 1966). Examples include thermal energy
storage systems (Phillips & Dave 1982; Rahm 1986), efficient methods to produce a
fluid of desired stratification in the laboratory (Walin 1971; Rahm & Walin 1979a;
Hyun & Hyun 1986), and the concept of an ocean farm (Rahm & Walin 1979b)
in which control of the interior fluid temperature is achieved by pumping cold fluid
from below. To conduct an experimental simulation of the present problem, porous
materials connected to constant-temperature baths can be used for the horizontal
walls, and thin metallic plates of high thermal conductivity for the vertical walls.

In the majority of previous investigations (e.g. Walin 1971; Sakurai & Matsuda
1972; Jischke & Doty 1975; Hyun 1985, 1987), interest was confined to the interior
core, far away from the boundary walls. Consequently, no explicit analysis of the
boundary layer on the horizontal wall was given. Usually, the condition of global
mass continuity was invoked to determine the flow characteristics in the interior. In
this paper, for a more complete mathematical formulation, a thorough analysis of the
horizontal boundary layer will be carried out. This will form an integral part of the
overall analytical description of transient processes in the whole cavity.

The principal mathematical tool used here is matched asymptotic analysis. The
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Figure 1. Problem definition and coordinate system.

effect of forced convection is measured by the intensity of throughflow (δw) imposed
at the horizontal wall, and that of heat-up is gauged by the strength of thermal forcing
(δT ) at the vertical wall. Consideration will be given to the configurations when these
two effects are opposing (δwδT > 0) or cooperative (δwδT < 0). Pertinent flow
modes will be identified, and physical rationalizations will be given.

The mathematical model is given in § 2. Extensive use of the matched asymptotic
method is made in § 3 to determine appropriate timescales and associated transient
flow fields. Sections 4 and 5 contain, respectively, physical interpretations of the
theoretical results for the opposing and cooperating cases. In § 6, to clarify the
theoretical analysis, a comparison between numerical and theoretical solutions is
given. A summary is given in § 7.

2. Mathematical formulation
A two-dimensional square enclosure with aspect ratio 1.0 is filled with an incom-

pressible Boussinesq fluid (dynamic viscosity µ, thermal conductivity k, thermometric
expansion coefficient β). The solid walls are assumed to be highly conducting. The
flow layout and rectangular coordinates are sketched in figure 1. The choice of a
square box represents the flow in a container of aspect ratio O(1). A rectangular box
may be studied with relative ease by one further scaling, and this feature will be dealt
with in a forthcoming paper.

At the initial state, the fluid is stationary and is stably stratified in the vertical
direction, i.e. the vertical fluid temperature distribution is

T ∗r =
1

2

{
(T ∗T + T ∗B) + (T ∗T − T ∗B)

z∗

L∗

}
,

in which T ∗T and T ∗B are respectively the temperatures at the top and bottom horizontal
walls, and L∗ is the half-height.

Fluid motion is generated at the initial instant (t∗ = 0) by simultaneous imposition
of the two external disturbances, i.e. the temperature at the vertical walls is increased
abruptly by δT ∗ and, at the same time, a uniform vertical throughflow δw∗ is forced
to pass through the top and bottom walls. The task is to depict the transient fluid
response to the sudden imposition of these disturbances.
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Non-dimensional quantities are defined (Jischke & Doty 1975) as

∇∗ ≡ L∗∇,

p =
p∗ − p∗r

ερ∗0g∗L∗β∗0∆T ∗
,

T =
T ∗ − T ∗r
ε∆T ∗

,

(u, w) = (u∗, w∗)
σ1/2

εL∗N
,

t = t∗Nσ1/2,

in which ∆T ∗ ≡ T ∗T − T ∗B , superscript ∗ denotes dimensional quantities, subscript r
refers to the initial state, subscript 0 indicates the reference value at the origin at the
initial state. Also, ε� 1 represents the strength of external disturbances, the Prandtl
number σ = µ∗0C∗p0/k∗0 and the Brunt–Väisälä frequency N = (β∗0∆T ∗g∗/L∗)1/2.

The linearized, non-dimensional governing equations are

∂u

∂x
+
∂w

∂z
= 0, (1)

∂u

∂t
= −∂p

∂x
+ Ra−1/2

(
∂2u

∂x2
+
∂2u

∂z2

)
, (2)

∂w

∂t
= −∂p

∂z
+ T + Ra−1/2

(
∂2w

∂x2
+
∂2w

∂z2

)
, (3)

σ
∂T

∂t
+ w = Ra−1/2

(
∂2T

∂x2
+
∂2T

∂z2

)
, (4)

in which the Rayleigh number Ra = ρ∗20 g
∗L∗3β∗0∆T ∗C∗ρ0/(k

∗
0µ
∗
0).

For a definite problem formulation, at the initial instant t = 0, the thermal loading
at the vertical walls is set at δT ∼ O(1), and the strength of throughflow is Ra−1/4δw,
δw ∼ O(1). These scalings imply that the effects of buoyancy-driven convection and
of forced convection are comparable.

The associated initial and boundary conditions can be stated as

T = u = 0 at t = 0, (5)

T [≡ Tw] = δT , u = w = 0 at x = ±1, (6)

T = δT , u = 0, w[≡Ww] = Ra−1/4δw at z = ±1. (7)

3. Transient analysis of the heat-up timescale, t ∼ O(Ra1/4)

For Ra � 1, the major features over t ∼ O(Ra1/4) can be characterized as: (i)
quasi-steady buoyancy-driven boundary layers near the vertical walls, (ii) a transient
inviscid interior, (iii) transient viscous boundary layers near the horizontal walls, and
(iv) corner zones in which the horizontal and vertical boundary layers merge. These
are sketched in figure 2 (see e.g. Walin 1971; Sakurai & Matsuda 1972; Jischke &
Doty 1975). In view of symmetry of the problem, it suffices to consider only 0 6 x 6 1.

The total solution Φ is written as Φ = Φi+Φvb+Φhb+Φc, and analytical descriptions
are sought by using the matched asymptotic method. Here, Φ stands for a flow
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Inner horizontal layer (IV)

Outer horizontal layer (III)
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(II)

x
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O(Ra–1/4)

O(Ra–1/8)
O(Ra–1/6)

O(Ra–1/4)

Figure 2. Characteristic flow regions.

variable, and subscripts i, vb, hb and c denote respectively the inviscid interior,
vertical boundary layer, horizontal boundary layer and corner zone. As in previous
studies (e.g. Sakurai & Matsuda 1972; Park & Hyun 1998), the principal lengthscales
are O(1) and O(Ra−1/4) in the interior and in the vertical boundary layer. However, in
the horizontal boundary layer, the lengthscales are double-structured, i.e. O(Ra−1/6)
and O(Ra−1/8) (Veronis 1970; van Heijst 1982).

3.1. Flow in the interior (region I )

Time is rescaled by using the heat-up timescale, τ ≡ Ra−1/4t, and, guided by Jischke
& Doty (1975), the lowest-order variables are

u = Ra−1/2ui, w = Ra−1/4wi, T = Ti, p = pi.

The governing equations are

∂wi

∂z
= 0. (8a)

∂pi

∂x
= 0. (8b)

∂pi

∂z
= Ti, (8c)

σ
∂Ti

∂τ
+ wi = 0. (8d)

It is clear that wi, Ti, and pi are functions of τ only.
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3.2. Flow in the vertical boundary layer (region II )

The vertical boundary layer is established over time O(Ra−1/2), as elaborated in
e.g. Sakurai & Matsuda (1972), Jischke & Doty (1975) and Park & Hyun (1998).
Consequently, in the transient analysis of the heat-up timescale O(Ra−1/4), the vertical
boundary layer is taken to be quasi-steady.

The appropriate scalings in the vertical boundary layer are

u = Ra−1/2(ui + uvb),

w = Ra−1/4wi + wvb,

T = Ti + Tvb,

p = pi + Ra−1/2pvb,

and the horizontal coordinate is rescaled as η = Ra1/4(1− x).
Substitution of the above variables into (1)–(4) yields

Tvb + ∂2wvb/∂η
2 = 0, (9a)

wvb − ∂2Tvb/∂η
2 = 0. (9b)

The boundary conditions at η = 0 are

wvb = 0,

Ti + Tvb = δT ,

and, as η →∞, wvb, Tvb → 0.
The solutions to (9a, b), subject to the above boundary conditions, are

Tvb(τ, η) = (δT − Ti(τ))e−η/
√

2 cos(η
√

2), (10a)

wvb(τ, η) = (δT − Ti(τ))e−η/
√

2 sin(η/
√

2). (10b)

The remaining task is to determine Ti(τ). This can be easily accomplished by using
the condition of global mass continuity, i.e.∫ 1

0

widx+

∫ ∞
0

wvbdη = δw. (11)

Equations (8d ), (10b) and (11) lead to

σ
∂Ti

∂τ
+

1√
2
Ti =

1√
2
δT − δw. (12a)

The solution to the above equation, subject to the initial condition Ti(τ = 0) = 0, is

Ti(τ) = (δT −√2δw)(1− e−τ/(
√

2σ)). (12b)

It also follows from (8d ) that

wi(τ) =

(
δw − δT√

2

)
e−τ/(

√
2σ). (12c)

The results shown in (10) and (12) describe the transient flows in the interior and
in the vertical boundary layers. However, the thrust of this paper is a more complete
analysis of transient flow in the horizontal boundary layer. It will be asserted that
this forms an essential part of the depiction of the heat-up process.
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3.3. Flow in the horizontal boundary layers (regions III and IV )

The principal feature of the horizontal boundary layer is a double-layer structure,
i.e. an inner layer of thickness O(Ra−1/6) and an outer layer of thickness O(Ra−1/8)
(see Hunter 1967; van Heijst 1982). The inner layer satisfies the no-slip condition at
the horizontal wall. The thicker outer layer matches the interior temperature to the
horizontal wall temperature. Also, this layer transports fluid from the vertical layer
to the interior, thereby causing heat-up in the interior. These notions were derived
from the analogy between rotating and stratified fluids (see e.g. Veronis 1970).

The solution techniques follow the methodology proposed by van Heijst (1982).
The variables in the horizontal boundary layer are expanded by using the expansion
parameter Ra−1/24. They are expressed as Φhb = Φ̂+ Φ̃, in which the hat and the tilde
refer to the outer (Ra−1/8) and inner (Ra−1/6) structure, respectively.

3.3.1. Analysis for the Ra−1/8 horizontal layer (region III )

In line with the scalings suggested by van Heijst (1982),

u = Ra−1/2ui + Ra−1/8ûj ,

w = Ra−1/4wi + Ra−1/4ŵj ,

T = Ti + T̂j ,

p = pi + Ra−1/8p̂j ,

and the boundary-layer coordinate ξj = (1+(−1)jz)Ra1/8 is introduced, where j = 0, 1
indicate, respectively, the lower and upper horizontal walls.

Rearranging (1)–(4) yields

(−1)j+1 ∂p̂j

∂ξj
+ T̂j = 0, (13a)

σ
∂T̂j

∂τ
+ ŵj =

∂2T̂j

∂ξ2
j

, (13b)

∂p̂j

∂x
= 0, (13c)

∂ûj

∂x
+ (−1)j

∂ŵj

∂ξj
= 0. (13d)

The boundary conditions are

ûj = ± (−1)j+1

√
2

∂T̂j

∂ξj
at x = ±1, (14a)

T̂j , ŵj −→ 0 as ξj −→ ∞, (14b)

Ti(τ) + T̂j(τ, x, ξj = 0) = δT
wi(τ) + ŵj(τ, x, ξj = 0) = δw

}
at ξj = 0. (14c,d )

Condition (14a) is analogous to the Ekman compatibility condition in rotating flows,
and the detailed derivation is given in the next section on the analysis of the corner
zone.
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From (13a), (13b) and (13c), it is obvious that p̂j , T̂j and ŵj are not functions of
x, i.e.

p̂j = p̂j(τ, ξj), T̂j = T̂j(τ, ξj) ŵj = ŵj(τ, ξj).

Equation (13d ) is integrated to give

ûj = (−1)j+1 ∂ŵj

∂ξj
x, (15)

in which the integration constant is zero in view of the condition ûj(τ, x = 0, ξj) = 0.
From (14a) and (15),

T̂j =
√

2ŵj , (16)

and, from (8d ), (14c) and (14d ), the equation for Ti(τ) is obtained:

σ
∂Ti

∂τ
+

1√
2
Ti =

1√
2
δT − δw. (17a)

The solution to (17a) is readily found as

Ti(τ) = (δT −√2δw)(1− e−τ/(
√

2σ)). (17b)

As anticipated, the equation and solution for Ti(τ), expressed in (17a) and (17b), are
identical to those for Ti(τ), shown in (12a) and (12b), which were obtained on the
basis of global mass continuity condition.

The equation for the temperature in the horizontal boundary layer is derived by
using (13b) and (16):

σ
∂T̂j

∂τ
+
T̂j√

2
=
∂2T̂j

∂ξ2
j

. (18)

The solution to (18), subject to the initial condition T̂j(0, ξj) = 0 and the boundary
conditions (14b) and (14c), is

T̂j(τ, ξj) =
√

2ŵj(τ, ξj) = (δT −√2δw)erfc

(
ξj

2

√
σ

τ

)
exp

(
− τ√

2σ

)
+
√

2δw

{
exp(−ξj/x)− 1

2
exp(−ξj/x)erfc

(√
τ/(x2σ)− ξj

2
√
τ/σ

)

+
1

2
exp(ξj/x)erfc

(√
τ/(x2σ) +

ξj

2
√
τ/σ

)}
, (19a)

in which x =
4
√

2.
Also, ûj is determined from (15):

ûj(τ, x, ξj) =
(−1)j

2

√
σ

2πτ
(δT −√2δw)x exp

(
−σξ

2
j

4τ
− τ√

2σ

)

+
(−1)j

x
δwx

{
exp(−ξj/x)− 1

2
exp(−ξj/x)erfc

(√
τ/(x2σ)− ξj

2
√
τ/σ

)

−1

2
exp(ξj/x)erfc

(√
τ/(x2σ) +

ξj

2
√
τ/σ

)}
. (19b)

The above procedure provides a complete analytical description of the Ra−1/8
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boundary layer. It is noted that the horizontal velocity at the wall does not satisfy
the no-slip condition. This will be taken care of by matching the above solution to
the solution for the Ra−1/6 boundary layer.

3.3.2. Analysis of the Ra−1/6 layer (region IV )

Again, in accordance with van Heijst (1982), the appropriate scalings are:

u = Ra−1/2ui + Ra−1/8ûj + Ra−1/8ũj ,

w = Ra−1/4wi + Ra−1/4ŵj + Ra−7/24w̃j ,

T = Ti + T̂j + Ra−1/8T̃j ,

p = pi + Ra−1/8p̂j + Ra−7/24p̃j ,

and the boundary-layer coordinate ζj = (1 + (−1)jz)Ra1/6 is introduced, in which
j = 0 and j = 1 denote respectively the lower and upper horizontal walls.

Substitution of the above into (1)–(4) yields

−(−1)j
∂p̃j

∂ζj
+ T̃j = 0, (20a)

w̃j =
∂2T̃j

∂ζ2
j

, (20b)

−∂p̃j
∂x

+
∂2ũj

∂ζ2
j

= 0, (20c)

∂ũj

∂x
+ (−1)j

∂w̃j

∂ζj
= 0. (20d)

The associated boundary conditions are

ũj , w̃j , T̃j → 0 as ζj →∞, (21a)

ũj(τ, x, ζj → 0) = −ûj(τ, x, ξj → 0), w̃j = T̃j = 0 as ζj = 0, (21b)

ũj = 0 at x = ±1. (21c)

Equations (20a), (20b) and (20c) lead to

∂T̃j

∂x
= (−1)j

∂3ũj

∂ζ3
j

, (22a)

∂w̃j

∂x
= (−1)j

∂5ũj

∂ζ5
j

. (22b)

Also, together with (20d ), one finds

∂2ũj

∂x2
+
∂6ũj

∂ζ6
j

= 0. (23)

The solution to (23) is taken to be of the form

ũj(τ, x, ζj) =

∞∑
n=1

Un(τ, ζj) sin(nπx), (24)
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and the boundary conditions are

Un = Fn = (τ),
∂3Un

∂ζ3
j

= 0,
∂5Un

∂ζ5
j

= 0 as ζj → 0.

in which

Fn(τ) = (−1)n+j
4

nπ

{
(δT −√2δw)

√
σ

πτ
exp

(
− τ√

2σ

)
+ x δw erf

(
1

x

√
τ

σ

)}
.

Placing (24) into (23) results in

Un(τ, ζj) = Fn(τ)

{
exp(−ωnζj)

2
+ exp(−ωnζj/2) cos

(π
3

+
√

3ωnζj/2
)}

where ωn = (nπ)1/3.

3.4. Analysis of the corner zone (region V )

The vertical and horizontal boundary layers merge in the corner zones (of size
Ra−1/4 × Ra−1/8), shown by region V in figure 2. For this zone, stretched coordinates
are introduced, i.e. η = Ra1/4(1 − x) and ξj = Ra1/8(1 + (−1)jz) (j = 0, 1). The
appropriate scalings for the corner zone are

u = Ra−1/2ui + Ra−1/2uvb + Ra−1/8ûj + Ra−1/8 ˆ̂uj,

w = Ra−1/4wi + wvb + Ra−1/4ŵj + ˆ̂wj,

T = Ti + Tvb + T̂j +
ˆ̂
Tj,

p = pi + Ra−1/2pvb + Ra−1/8p̂j + Ra−1/2 ˆ̂pj.

Substituting the above into (1)–(4) for the corner zone results in

∂ ˆ̂wj
∂ξj
− (−1)j

∂ ˆ̂uj
∂η

= 0, (25a)

ˆ̂
Tj +

∂2 ˆ̂wj
∂η2

= 0, (25b)

ˆ̂wj − ∂2 ˆ̂
Tj

∂η2
= 0, (25c)

with the boundary conditions

ûj(τ, x = 1, ξj) + ˆ̂uj(τ, η → 0, ξj) = 0, (26a)

ˆ̂wj(τ, η → 0, ξj) = 0, (26b)

T̂j(τ, x = 1, ξj) +
ˆ̂
Tj(τ, η → 0, ξj) = 0 (j = 0, 1), (26c)

ˆ̂uj, ˆ̂wj,
ˆ̂
Tj → 0 as η →∞ or ξj →∞, (26d)

The solutions to (25b), (25c) are

ˆ̂
Tj = −T̂je−η/

√
2 cos(η/

√
2), (27a)

ˆ̂wj = −T̂je−η/
√

2 sin(η/
√

2). (27b)
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Also, integrating (25a) gives

ˆ̂uj =
(−1)j√

2

∂T̂j

∂ξj
e−η/

√
2[sin(η/

√
2) + cos(η/

√
2)]. (27c)

Combining (26a) and (27c), the compatibility condition, which links the (Ra−1/4 ×
Ra−1/8) corner zone and the horizontal boundary layers, is obtained:

ûj(τ, r = 1, ξj) =
(−1)j+1

√
2

∂T̂j

∂ξj
. (28)

The above relationship is analogous to the well-known Ekman compatibility condition
in rotating fluids (see e.g. Greenspan 1968).

In summary, the streamfunction Ψ can be computed as

Ψ (τ, x, z) =

∫ x

0

wdx

=

∫ x

0

{
Ra−1/4wi + wvb +

1∑
j=0

(Ra−1/4ŵj + Ra−7/24w̃j + ˆ̂wj)

}
dx. (29a)

The fourth term in the above integral,
∫ x

0
Ra−7/24w̃jdx, can, in principle, be calculated

from (22b) and (24). However, this operation is tedious and time-consuming. Under
the assumption Ra� 1, this term is smaller than the other terms, which are O(Ra−1/4),
and therefore can be neglected in (29a). It then follows that

Ψ (τ, x, z) ≈ Ra−1/4

(
wi(τ) +

1∑
j=0

ŵj(τ, ξj)

)
x

+Ra−1/4

(
δT − Ti(τ)−

1∑
j=0

T̂j(τ, ξj)

)
e−η/

√
2 sin(η/

√
2 + π/4). (29b)

It is noted that Ti and wi are given in (12b) and (12c), and T̂j and ŵj are given in
(19a), and, η = Ra1/4(1−x) and ξj = Ra1/8(1 + (−1)jz). In (29a), the third and fourth
terms refer, respectively, to the flows in the Ra−1/8-layer and Ra−1/6-layer. The fact
that the third term is smaller than the fourth term implies that, in the limit Ra� 1,
most of the mass transport is accomplished through the Ra−1/8-layer. The dynamical
role of the Ra−1/8-layer is two-fold: (i) it matches the temperature in the interior to
the temperature at the horizontal wall, and (ii) it carries the mass transport from the
horizontal wall to the interior as well as to the vertical boundary layer. The overall
character of the Ra−1/8-layer is analogous to the outer Stewartson layer of thickness
O(E1/4), where E is the Ekman number, which appears in rotating flows in a cylinder
with mass fluxes imposed at the cylindrical sidewall (e.g. Barcilon 1968).

As remarked previously, the no-slip condition at the horizontal wall is met by the
Ra−1/6 horizontal layer. It may now be stated that, in the present problem, the outer
layer is more important than the inner layer in setting up the interior motion.

4. The global adjustment process: opposing configuration (δwδT > 0)
With δw > 0(δw < 0), the effect of throughflow is to cool down (heat up)

the interior; and, δT > 0(δT < 0) causes the interior to heat up (cool down).
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Therefore, the condition δwδT > 0, indicates opposite contributions to the interior.
For simplicity, we take δw > 0 and δT > 0.

4.1. Relative magnitudes of δw and δT

As revealed in the foregoing analysis, δw/δT represents the ratio of the effect of
forced convection of throughflow at the horizontal wall to the effect of buoyant
convection of thermal loading at the vertical wall. Also, the physical meaning of
δw/δT can be seen in the grouping of nondimensional parameters:

δw

δT
=

(
W ∗

wσ
1/2Ra1/4

L∗N

)/(
T ∗w − T ∗r
T ∗T − T ∗B

)
= Gr−1

H Re
−1
H

where

GrH =
k∗0

µ∗0C∗p0

ρ∗20 g
∗L∗3β∗0 (T ∗w − T ∗r )C∗p0

µ∗0k∗0
,

ReH =
ρ∗0W ∗

wR
∗

µ∗0
,

R∗ denoting the thickness of the vertical boundary layer, i.e. R∗ ≡ L∗ Ra−1/4. Obvi-
ously, GrH is the Grashof number based on the horizontal temperature contrast; and
ReH the Reynolds number in the vertical boundary layer. In summary, δw/δT is the
mixed-convection parameter, representing the strength of forced convection relative
to that of buoyancy convection.

The preceding analysis in § 3 established a criterion for the magnitude of δw/δT , i.e.

the general flow character can be classified according to δw/δT T 1/
√

2. The domi-
nant features of the transient process can be characterized by the forced-convection-
dominant mode (δw/δT > 1/

√
2), the nearly static mode (δw/δT ≈ 1/

√
2), and the

buoyancy-convection-dominant mode (0 < δw/δT < 1/
√

2).

4.2. Forced-convection-dominant mode (δw/δT > 1/
√

2)

Plots of the transient flow pattern for δw/δT > 1/
√

2 are calculated by using equation
(29b) and illustrated in figure 3. It is discernible that the vertical boundary layer is
formed in time t ∼ O(1), which is much shorter than the heat-up timescale. This
again justifies the treatment of vertical boundary layer as being quasi-steady. The
fluid transport carried upward in the vertical boundary layer, QVB , can be computed
using (10b) and (12b):

QVB = 2Ra−1/4

∫ ∞
0

wvb(τ, η)dη

= 2Ra−1/4δw + (
√

2δT − 2δw)Ra−1/4 exp(−τ/(√2σ)). (30a)

As seen in the definition of the problem, the first term on the right-hand side of (30a)
indicates the fluid intake. QHW through the bottom horizontal wall, i.e.

QHW = 2Ra−1/4δw. (30b)

If δw/δT > 1/
√

2, the second term on the right-hand side of (30a) is negative,
which implies that, in the transient stage, QVB < QHW . This further demonstrates
that the vertical boundary layer cannot transport upward all the fluid that has
entered through the bottom horizontal wall. Therefore, part of the fluid influx is
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Figure 3. Plots of the stream function for the forced-convection-dominant mode (δw = 2.0,
δT = 1.0); σ = 1.0 and Ra = 108. Times, τ, are: (a) 0.3; (b) 0.6; (c) 1.0; (d ) ∞. The contour
increment is 0.1× Ra−1/4δw.

transported upward directly through the inviscid interior to reach the horizontal
boundary layer at the top wall (see figures 3b and c). In the inviscid interior (region
I), the vertical motions bring up the cold fluid from below, which causes cool-down.
At the same time, the temperature difference between the interior and the vertical
wall increases, which, in turn, invigorates the buoyancy-driven motion in the vertical
boundary layer. This strengthened vertical layer carries upward a larger amount
of fluid; therefore, the vertical transports in the interior weaken (see figure 3c).
Following these processes, the bulk of the inviscid interior evolves to a new state
of equilibrium, i.e. as τ → ∞, Ti → δT − √2δw, which is portrayed in equation
(12b). The global transient adjustment for the case δw/δT > 1/

√
2 is depicted in

figure 3. As observed earlier, the principal transient characteristics in the inviscid
interior are controlled more by forced convection through the horizontal wall than
by bouyancy-driven convection near the vertical wall. These aspects are in accord
with the general findings in § 4.1. In the steady state, the entire fluid transport is
concentrated in horizontal and vertical boundary layers, and the inviscid interior is
stagnant and stably stratified (see figure 3c). These patterns are in line with previous
assertions (e.g. Rahm & Walin 1979; Hyun & Hyun 1986).

The vertical profiles of the evolving temperature T and vertical velocity w near the
horizontal wall are shown in figure 4. Immediately after the simultaneous switch-on
of thermal loading (δT = 1.0) and of throughflow (δw = 2.0) at the horizontal wall,
both T and w decrease rapidly, due to diffusion from the wall and forced convection
of the upward throughflow, in the close vicinity of the horizontal wall. As the inviscid
interior region is approached, diffusion from the wall diminishes, and T and w settle
to uniform values, nearly independent of height. As time elapses, the thickness of the
boundary layer increases; also, as the cool-down due to vertically upward transport
proceeds. T decreases further in the interior. The magnitude of w is largest at the
horizontal wall because part of the throughflow moves to the vertical boundary layer
along the horizontal layer, and w decreases and settles to a uniform value as the
interior is approached.

In summary, in the forced-convection-dominant mode, the inviscid interior cools
down due to the vertically upward fluid motions during the transient phase. With
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Figure 4. Evolution of temperature, T , and vertical velocity, w, fields for the forced-
convection-dominant mode (δw = 2.0, δT = 1.0). Times, τ, are: (a) 0.1; (b) 0.5; (c) 2.0; σ = 1.0 and
Ra = 108. ξ0 = (1 + z)Ra1/8.

passage of time, w in the interior diminishes, indicating the end of the transient phase.
As ascertained earlier, with the cooling down of the interior, the vertical boundary
layer is intensified. This allows the fluid transported vertically upward to be carried
into the vertical boundary layer.

4.3. Buoyant-convection-dominant mode (0 < δw/δT < 1/
√

2)

When 0 < δw/δT < 1/
√

2, over the transient phase, the second term on the right-
hand side of (30a) becomes positive, which means that QHW < QVB . This implies
that the fluid pumped upward by the vertical boundary layer, QVB , is larger than
the fluid intake by throughflow at the bottom horizontal wall, QHW . Put differently,
the entire volume of throughflow forms part of the vertical boundary layer transport.
Near the top horizontal wall, since QHW < QVB , all of the transport by the vertical
boundary layer cannot be accommodated by the discharge through the top horizontal
wall. Naturally, part of QVB has to return to the inviscid interior, which gives rise
to vertically downward motions in the interior. These downward motions bring hot
fluid from above, and, at a given location in the interior, heat-up occurs, and the
fluid temperature rises as time elapses. With the increasing interior temperature, the
difference in temperature between the interior and vertical walls decreases, which
weakens the motion in the vertical boundary layer. The overall pattern of the time-
dependent process is depicted by the above scenario: as time passes, the state in which
QHW ≈ QVB is reached, and the interior approaches a new equilibrium state, i.e. a
stagnant interior with Ti(τ→∞) ≈ δT −√2δw.

This characteristic transient behaviour is described by equations (12b) and (30),
and is portrayed in figure 5 for the case 0 < δw/δT < 1/

√
2. In short, the interior

motions are influenced more by buoyant effects in the vertical boundary layer than
by forced-convection effects of throughflow at the horizontal wall.

The evolutions of w and T near the bottom horizontal wall are exhibited in figure 6.
Immediately after the switch-on of δw and δT , both w and T decrease rapidly away
from the wall due to diffusion from the wall. After ξ passes the edge of the boundary
layer, w and T approach uniform values in the inviscid interior. It is noted, however,
that, in contrast to the forced-convection-dominant mode, the value of T in the
interior increases with time. This reflects the aforementioned heat-up process in the
interior, which emanates from buoyancy effects in the vertical boundary layer. The
vertical motions in the interior are initially downward (w negative), and, as time
elapses, fluid in the interior becomes stagnant (w approaches zero). Again, as time
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Figure 5. Plots of the stream function for the buoyant-convection-dominant mode (δw = 1/2,
δT = 1.0); σ = 1.0 and Ra = 108. Times, τ, are: (a) 0.3; (b) 0.6; (c)1.0; (d ) ∞. The contour
increment is 0.1× Ra−1/4δw.
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Figure 6. Evolution of temperature, T , and vertical velocity, w, fields for the buoyant-
convection-dominant mode (δw = 1/2, δT = 1.0). Times, τ, are: (a) 0.1; (b) 0.5; (c) 2.0. σ = 1.0

and Ra = 108, ξ0 = (1 + z)Ra1/8.

progresses, the mass transport in the vertical boundary layer is decreased, since the
temperature difference between the interior and vertical walls becomes small.

4.4. Static mode (δw/δT ≈ 1/
√

2)

As is apparent in equation (12b) and (12c), if δw/δT ≈ 1/
√

2, the interior fluid
maintains the initial conditions (Ti(τ) = 0 and wi(τ) = 0) over the heat-up phase
t ∼ O(Ra1/4). In this case, the vertical boundary layer is established at t ∼ O(1),
which is much shorter than the heat-up time t ∼ O(Ra1/4); and the vertical layer
completely accommodates the transport of the throughflow. Therefore, the fluid
intake by throughflow moves in the horizontal boundary layer toward the vertical
wall, and is carried upward in the vertical boundary layer. Near the top horizontal
wall, this vertical-layer transport then moves along the horizontal boundary layer,
and, finally is discharged to the outside vertically through the top horizontal wall. In
short, the global flow pattern in the static mode is similar to the steady-state flow
of the two previous modes, which were shown in figures 3(d ) and 5(d ). In the static
mode, the pertinent timescale is t ∼ O(1), which corresponds to dimensional time
t∗ ∼ O(N−1σ−1/2), in all the region except the horizontal boundary layer. In this layer,
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Figure 7. Evolution of temperature, T , and vertical velocity, w, fields for the static mode

(δw = 1/
√

2, δT = 1.0). Times, τ, are: (a) 0.1; (b) 0.5; (c) 2.0. σ = 1.0 and Ra = 108.
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Figure 8. Profiles of vertical velocity, w, in the vertical boundary layer. Times, τ, are: (a) 0.3;
(b) 1.0; (c) ∞. The values (δw, δT ) are: (i) δw = 2.0, δT = 1.0 (forced-convection-dominant mode);

(ii) δw = 1/
√

2, δT = 1.0 (static mode); (iii) δw = 0.2, δT = 1.0 (buoyant-convection-dominant

mode). σ = 1.0 and Ra = 108, η = (1− x)Ra1/4.

the steady state is reached at t ∼ O(Ra1/4). In other words, in the heat-up phase, the
time-dependent features are discernible only in the horizontal boundary layer, and
flows in the other regions are essentially steady.

Evolutionary vertical profiles of T and w in the vicinity of the bottom horizontal
wall are illustrated in figure 7. The initial development of the horizontal boundary
layer, which is due to diffusion from the wall, is similar to that of the two previous
modes. In the interior, however, both w and T approach zero at all times, which is
unique to the static mode.

The qualitative differences in the transient flow character in the vertical boundary
layer of the above three modes are shown in figure 8. As asserted earlier, the
inviscid interior region cools down, which is influenced by throughflow, in the forced-
convection mode. In contrast, in the buoyant-convection mode, the interior region
heats up, which is dominated by buoyancy effects in the vertical boundary layer. In the
static mode, the interior remains in the initial-state equilibrium. Consequently, with
the passage of time, the temperature difference between the interior and vertical wall
(i) increases in the forced-convection mode, (ii) decreases in the buoyant-convection
mode, and (iii) remains unchanged in the static mode. Accordingly, the strength of
the vertical boundary layer, as represented by w in figure 8, (i) increases, (ii) decreases,
and (iii) remains unchanged, in the respective modes.
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Figure 9. Plots of the stream function for the buoyant-convection-dominant mode (δw = 1.0,
δT = −2.0). σ = 1.0 and Ra = 108. Times, τ, are: (a) 0.6; (b) 1.0; (c) 2.0; (d ) ∞. The contour
increment is 0.1× Ra−1/4δw.

5. The global adjustment process: cooperating configuration (δwδT < 0)
The cooperating configuration refers to the situation when both the forced-

convection effect and the buoyancy effect act to heat up (or cool down) the interior
fluid. For definiteness, an example of cool-down (δw > 0, δT < 0) will be dealt with
(δw = 1.0, δT = −2.0).

As displayed in figure 9(a), at small times, the cooling (δT < 0) of the vertical
wall induces downward flows in the vertical boundary layer. This induces clockwise-
circulating motions in the entire right half-cavity, which causes the fluid transport of
throughflow to move directly upward in the interior. With the passage of time, due
to the intrusion of cold throughflow, the interior cools down, which, in turn, lowers
the temperature difference between the interior and the vertical wall. Consequently,
motions in the vertical boundary layer weaken, and the clockwise-circulating flow
tends to be localized close to the vertical wall (see figure 9b). As cool-down of
the interior progresses, the temperature of the interior becomes lower than that of
the vertical wall. This reverses the direction of buoyancy; therefore, in the vertical
boundary layer, a rising motion takes place (see figure 9c). After this stage has been
reached, the transient behaviour is akin to that of the forced-convection mode of the
opposing configuration (see figure 9c, d ). At the final stage (figure 9d ), as expected,
the majority of fluid is carried via the boundary layers, and the interior is occupied
by stratified stagnant fluid.

Figure 10 portrays the evolution of vertical profiles of T and w near the bottom
horizontal wall. The cool-down of the interior is discernible. It is observed that, at very
small times (e.g. see the curve for τ = 0.1 of figure 10b), the magnitude of the vertical
velocity wi[≡ w(τ = 0.1, ξ → ∞)] in the interior is larger than the vertical intake
throughflow velocity (δw) at the horizontal wall. This is because of the formation
of clockwise-circulating flows (see figure 9a). These flows push the original vertically
oriented throughflow toward the cavity centreline (x = 0), which reduces the effective
flow passage area. It is recalled that, in the forced-convection-dominant mode of the
opposing configuration, part of the interior vertical fluid transport is added to the
flow in the vertical boundary layer, which results in wi < δw.

One notable feature of the cooperating configuration is the presence of clockwise-
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Figure 10. Evolution of temperature, T , and vertical velocity, w, fields for the static mode (δw =
1.0, δT = −2.0). Times, τ, are: (a) 0.1; (b) 0.5; (c) 2.0. σ = 1.0 and Ra = 108, ξ0 = (1 + z)Ra1/8.
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Figure 11. Profiles of vertical velocity, w, fields in the vertical boundary layer (δw = 1.0,
δT = −2.0). Times, τ, are: (a) 0.2; (b) 0.7; (c) 1.5; (d ) ∞. σ = 1.0 and Ra = 108. η = (1− x)Ra1/4.

circulating flow at small times. As emphasized earlier, this flow pattern disappears
after some time (τ = τc), and the time-dependent flow characteristics after this time,
i.e. τ > τc, are similar to those of the forced-convection mode of the opposing
configuration. In an effort to gauge τc, it is noted that in (10b) the maximum velocity
(wvb)max in the vertical boundary layer occurs at η = π/4:

[wvb(τ, η =
√

2π/4)]max = (δT − Ti(τ))e−π/4√
2

= [
√

2δw + (δT −√2δw)e−τ/(
√

2σ)]
e−π/4√

2
. (31a)

For δw/δT < 0, (wvb)max changes sign from negative to positive at τ = τc, where

τc =
√

2σ ln

(
1− 1√

2(δw/δT )

)
. (31b)

It is obvious in (31a) and (31b) that, in the vertical boundary layer, motions are
downward for 0 6 τ < τc, and upward for τ > τc. For example, for σ = 1.0, δw = 1.0
and δT = −2.0 we have τc ≈ 1.3, which is consistent with the computed data in
figure 11.

From (31b), the characteristic timescale τc is estimated for two limiting cases:
(a) if δw/δT → −∞, i.e. δw is fixed and δT → 0−, τc → 0;
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(b) if δw/δT → 0, i.e. δw → 0+ and δT is fixed, τc →∞.
In effect, (a) refers to the stratifying process induced by a throughflow with no

thermal loading at the vertical wall. In this case, there is no recirculating flow in
the interior to begin with. Problem (b) represents the stratifying process initiated by
a thermal loading at the vertical wall with no throughflow. As documented for this
case, over the heat-up timescale, the recirculating flow in the global region controls
the overall cool-down process. The qualitative interpretations of these two limiting
cases involving τc are in line with the physical depictions of the overall transient
adjustment process.

6. Comparisons of numerical and theoretical solutions
A full numerical solution to the governing equations is obtained to validate the

major assertions of the theoretical analysis. Specifically, numerical computational
results for the configuration δwδT < 0 of § 5 will be scrutinized.

The complete non-dimensionalized Navier–Stokes equations are

∂u

∂x
+
∂w

∂z
= 0,

∂u

∂t
+ ε

∂(uu)

∂x
+ ε

∂(wu)

∂z
= −∂p

∂x
+ Ra−1/2

(
∂2u

∂x2
+
∂2u

∂z2

)
,

∂w

∂t
+ ε

∂(uw)

∂x
+ ε− ∂(ww)

∂z
= −∂p

∂z
+ T + Ra−1/2

(
∂2w

∂x2
+
∂2w

∂z2

)
,

σ
∂T

∂t
+ ε

∂(uT )

∂x
+ ε

∂(wT )

∂z
+ w = Ra−1/2

(
∂2T

∂x2
+
∂2T

∂z2

)
.

Again, the above system is characterized by the Prandtl number σ = µ∗0C∗p0/k∗0 the

Rayleigh number Ra = ρ∗20 g
∗L∗3β∗0∆T ∗C∗p0/k∗0µ∗0 and the Rossby number ε which

measures the strength of nonlinear effects stemming from the external disturbance.
For the numerical solution, the parameter values are chosen to be compatible with

the previous linear theoretical analysis, i.e. σ = 1.0, Ra = 107, ε = 0.01, δw = 1.0,
δT = −2.0, to simulate a cooperating configuration (δwδT < 0).

For the numerical computation, the initial and boundary conditions are

u = w = T = 0 at t = 0,

and

u = w = 0, T = δT = −2.0 at x = ±1.0,

u = 0, w = Ra−1/4δw = 10−7/4 at z = ±1.0.

The numerical computations were performed using the EL2D code, which is based
on the SIMPLER algorithm (Patankar 1980). A staggered and stretched grid, with
81×81 mesh points, was deployed. A large number of grid- and time step-convergence
tests were conducted, and the outcome was satisfactory. The details of the numerical
computations have been well documented (Patankar 1980).

The results of numerical solution are displayed in figures 12–14. The time-dependent
evolution of the stream function is shown in figure 12, which is in accord with the
results of § 5. At early times, near the vertical sidewall, due to δT < 0, downward
motions are seen (see figure 12a). This creates a strong clockwise circulation. At later
times, as cool-down in the interior progresses, the clockwise circulation weakens (see
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Figure 12. Results of the full numerical solution. Plots of stream function (Ψ ) for the buoy-
ant-convection-dominant mode (δw = 1.0, δT = −2.0). Times, τ, are: (a) 4.22×10−2; (b) 7.6×10−1;
(c) 1.69; (d ) 16.9. σ = 1.0 and Ra = 107. ∆Ψ = 0.0035.

figure 12b). At still later times, the overall flow is controlled by the forced-convection
mode of the opposing configuration (see figure 12c, d ).

Note the weak waviness seen in the streamline pattern at intermediate times in
figure 12(b). This reflects the presence of inertial oscillation, which is characterized
by the Brunt–Väisälä frequency N = (β∗0∆T ∗g∗/L∗)1/2 stemming from the basic
stratification. Recall that the foregoing theoretical analysis was carried out by using
the heat-up timescale [O(N−1Ra1/4)], which is much larger than the inertial oscillation
timescale [O(N−1)]. Therefore, the theoretical predictions do not capture the weak
wavy patterns in the streamlines in the interior. The general flow patterns of the
theoretical analysis of § 5, viewed over the whole heat-up process, are clearly in line
with the numerical solution. Close agreement is seen between the theoretical and
numerical solutions for the temperature field, as shown in figure 13. It also shows the
progress of cool-down in the interior.

The time history of the vertical velocity (w) near the vertical boundary layer
is plotted in figure 14. Good agreement is apparent between the theoretical and
numerical solutions. However, it is noted that, at the initial state (τ → 0), the
numerical solution shows w → 0, whereas w 6= 0 in the theoretical solution. This is
again explained by the fact that, in the theory, time is scaled by the heat-up timescale
[O(N−1Ra−1/4)], which is much larger than the timescale of formation of the vertical
boundary layer [O(N−1)]. Consequently, in the theory, at the initial state (τ → 0),
the vertical boundary layer has already been established. This discrepancy, however,
does not invalidate the usefulness of the overall analysis of the heat-up process. Note
also that the results in figure 14 corroborate the definition for τc(τc ≈ 1.3 based on
(31b)), which indicates the timescale over which the clockwise circulation flow near
the sidewall vanishes. In summary, the principal assertions of the present theoretical
developments are shown to be highly consistent with the full numerical solutions.

7. Concluding remarks
The transient processes of an initially stationary and stably stratified fluid in

a square container is studied by employing the matched asymptotic method. The



Transient motion of a confined stratified fluid 315

1

0

–1

–2

–2

–3
0 1 0 1

–4

–3

–2

–2

–1
(b)(a)

(c) (d )

0 1 0 1

x x

T

T

Figure 13. Profiles of temperature, T , fields at z = 0 (δw = 1.0, δT = −2.0). Times, τ, are:
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Figure 14. Times histories of vertical velocity, w, at x = 0.974 and z = 0 (δw = 1.0, δT = −2.0).
σ = 1.0 and Ra = 107. ——, theory; •, numerical solution.

boundary walls are highly conducting. Flow is induced by the simultaneous switch-
on of a temperature increase (δT ) at the vertical wall and a vertical throughflow
(Ra−1/4δw) at the horizontal walls.

The transient adjustment in the interior over the heat-up timescale, t ∼ O(Ra1/4),
is mainly effected by the vertical motions of magnitude O(Ra−1/4). The horizontal
boundary layer is of double-layered structure: an O(Ra−1/8) outer layer and an
O(Ra−1/6) inner layer. The transient outer layer matches the flow features between
interior and boundary layers. The steady inner layer satisfies the no-slip condition
at the horizontal walls. The vertical boundary layer is formed over t ∼ O(1), and it
exhibits the characteristics of a buoyancy layer.

The explicit character of the transient flow is determined by δw/δT , and opposing
(δw/δT > 0) and cooperating (δw/δT < 0) configurations are considered.
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In the opposing configurations, δw/δT represents a mixed convection parameter.
The overall flow pattern may be characterized as (i) a forced-convection-dominant
mode (δw/δT > 1/

√
2), (ii) a buoyancy-convection-dominant mode (0 < δw/δT <

1/
√

2), (iii) a static mode (δw/δT ≈ 1/
√

2).

In the forced-convection mode (δw/δT > 1/
√

2), in the transient phase the vertical
boundary layer cannot accommodate the entire fluid transport of the throughflow.
In the interior, therefore, cool-down occurs due to the upward motion of cold fluid
from below. At large times, the vertical boundary layer is strengthened to carry more
fluid. In the steady state, the interior motions subside and a new equilibrium state is
reached.

In the buoyant-convection-dominant mode (0 < δw/δT < 1/
√

2), in the transient
phase the fluid transport in the vertical boundary layer is larger than the throughflow.
Therefore, part of the fluid is returned to the interior near the top horizontal wall.
This causes downward motion of hot fluid from above, and the interior heats up.
At large times, the vertical boundary layer weakens, and a new equilibrium state is
approached.

The static mode (δw/δT ≈ 1/
√

2) is a special case of the opposing configuration.
The fluid transport in the vertical boundary layer balances the throughflow at the
bottom horizontal wall. The transient characteristics are visible only in the horizontal
boundary layer, and the other regions are essentially steady over the heat-up timescale.

In the cooperating configuration (δw > 0, δT < 0), sinking motions occur in
the vertical boundary layer at small times, which produces a clockwise-circulation
flow in the interior (0 < x < 1). The throughflow near the bottom horizontal wall
is pushed toward the cavity centreline (x = 0), and the throughflow is transported
directly via the interior toward the top horizontal wall. As cool-down in the interior
progresses, the interior temperature becomes lower than that of the vertical wall,
so that rising motions occur in the vertical boundary layer. This switch-over time
τc is computed, and for τ > τc the general flow pattern is similar to that of the
forced-convection-dominant mode.

This work was supported by grants from the NRL-Project, MOST, KOSEF, South
Korea.
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